1. |
Определение мутаций в генах BRCA1 и BRCA2 методом секвенирования следующего поколения (NGS) за счет средств обязательного медицинского страхования (ОМС) [Электронный ресурс]. URL: http://www.cancergenome.ru/mutations/BRCA1_2_OMS/ (дата обращения: 14.11.2022).
| |
2. |
Pederson HJ, Noss R. Updates in hereditary breast cancer genetic testing and practical high risk breast management in gene carriers. Semin Oncol. 2020;47(4):182–186.
| |
3. |
Mao R, Krautscheid P, Graham RP et al. Genetic testing for inherited colorectal cancer and polyposis, 2021 revision: a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2021;23(10):1807–1817.
| |
4. |
Клинические рекомендации «Рак молочной железы». Ассоциация онкологов России, Общероссийская общественная организация «Российское общество клинической онкологии», Общероссийская общественная организация «Российское общество онкомаммологов»; 2021; [Электронный ресурс]. URL: https://cr.minzdrav.gov.ru/recomend/379_4 (дата обращения: 14.11.2022).
| |
5. |
А.С. Цуканов, Кашников В.Н., Пикунов Д.Ю., Чернышов С.В. Синдром Линча: диагностика, мониторинг и лечение: учебно-методическое пособие, – М.: Изд-во «Боргес», 2021. – 40 с.
| |
6. |
Клинические рекомендации «Рак прямой кишки». Общероссийская общественная организация «Российское общество клинической онкологии», Российское общество специалистов по колоректальному раку, Общероссийская общественная организация «Ассоциация колопроктологов России», Ассоциация онкологов России; 2022; [Электронный ресурс]. URL: https://cr.minzdrav.gov.ru/schema/554_3. (дата обращения: 14.11.2022).
| |
7. |
Клинические рекомендации «Аденоматозный полипозный синдром». Общероссийская общественная организация «Ассоциация колопроктологов России», 2022, [Электронный ресурс]. URL: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://new.gnck.ru/specialists/zhurnal-koloproktologiya/journal_2_80_2022.pdf (дата обращения: 14.11.2022).
| |
8. |
Kuchenbaecker KB, Hopper JL, Barnes DR, et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA. 2017;317(23):2402-2416.
| |
9. |
Клинические рекомендации «Рак молочной железы». Ассоциация онкологов России, Общероссийская общественная организация «Российское общество клинической онкологии», Общероссийская общественная организация «Российское общество онкомаммологов»; 2021; [Электронный ресурс]. URL: https://cr.minzdrav.gov.ru/recomend/379_4.
| |
10. |
Sy SM, Huen MS, Chen J. PALB2 is an integral component of the BRCA complex required for homologous recombination repair. Proc Natl Acad Sci U S A. 2009;106(17):7155-60.
| |
11. |
Xia B, Sheng Q, Nakanishi K, et al. Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol Cell. 2006;22(6):719–729.
| |
12. |
Genetics. Breastcancer.org. https://www.breastcancer.org/risk/risk-factors/genetics. Published 2022. Accessed August 29, 2022.
| |
13. |
Hu ZY, Liu L, Xie N, et al. Germline PALB2 mutations in cancers and its distinction from somatic PALB2 mutations in breast cancers. Front Genet. 2020;11:829.
| |
14. |
Moslemi M, Moradi Y, Dehghanbanadaki H, et al. The association between ATM variants and risk of breast cancer: a systematic review and meta-analysis. BMC Cancer. 2021;21(1):27.
| |
15. |
Stucci LS, Internò V, Tucci M, et al. The ATM gene in breast cancer: its relevance in clinical practice. Genes (Basel). 2021;12(5):727.
| |
16. |
Stolarova L, Kleiblova P, Janatova M, et al. CHEK2 germline variants in cancer predisposition: stalemate rather than checkmate. Cells. 2020;9(12):2675.
| |
17. |
Magni M, Ruscica V, Buscemi G, et al. Chk2 and REGγ-dependent DBC1 regulation in DNA damage induced apoptosis. Nucleic Acids Res. 2014;42(21):13150-60.
| |
18. |
Клинические рекомендации «Рак желудка». Ассоциация онкологов России, Общероссийская общественная организация «Российское общество клинической онкологии»; 2020; [Электронный ресурс]. URL: https://cr.minzdrav.gov.ru/recomend/574_1.
| |
19. |
Min A, Im SA, Yoon YK, et al. RAD51C-deficient cancer cells are highly sensitive to the PARP inhibitor olaparib. Mol Cancer Ther. 2013;12(6):865-77.
| |
20. |
Genetic / Familial high-risk assessment: breast, ovarian, and pancreatic. The National Comprehensive Cancer Network (NCCN) Guideline, v.3.2023. [Электронный ресурс]. URL: https://www.nccn.org/professionals/physician_gls/pdf/genetics_bop.pdf
| |
21. |
Suszynska M, Ratajska M, Kozlowski P. BRIP1, RAD51C, and RAD51D mutations are associated with high susceptibility to ovarian cancer: mutation prevalence and precise risk estimates based on a pooled analysis of ~30,000 cases. J Ovarian Res. 2020;13(1):50.
| |
22. |
Yang X, Song H, Leslie G, et al. Ovarian and breast cancer risks associated with pathogenic variants in RAD51C and RAD51D. J Natl Cancer Inst. 2020;112(12):1242–1250.
| |
23. |
Teyssonneau D, Margot H, Cabart M, et al. Prostate cancer and PARP inhibitors: progress and challenges. J Hematol Oncol. 2021;14(1):51.
| |
24. |
Pećina-Šlaus N, Kafka A, Salamon I, Bukovac A. Mismatch repair pathway, genome stability and cancer. Front Mol Biosci. 2020;7:122.
| |
25. |
Duffy MJ, Crown J. Biomarkers for predicting response to immunotherapy with immune checkpoint inhibitors in cancer patients. Clin Chem. 2019;65(10):1228–1238.
| |
26. |
Klingbiel D, Saridaki Z, Roth AD, et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. Ann Oncol. 2015;26(1):126–132.
| |
27. |
Клинические рекомендации «Злокачественное новообразование ободочной кишки», ID 396, год утверждения: 2022. URL: https://cr.minzdrav.gov.ru/schema/396_3.
| |
28. |
Lynch Syndrome. Cancer.Net. URL: https://www.cancer.net/cancer-types/lynch-syndrome.
| |
29. |
Pathak SJ, Mueller JL, Okamoto K, et al. EPCAM mutation update: variants associated with congenital tufting enteropathy and Lynch syndrome. Hum Mutat. 2019;40(2):142–161.
| |
30. |
Eguchi H, Kumamoto K, Suzuki O, et al. Identification of a Japanese Lynch syndrome patient with large deletion in the 3’ region of the EPCAM gene. Jpn J Clin Oncol. 2016;46(2):178-84.
| |
31. |
Olkinuora AP, Peltomäki PT, Aaltonen LA, Rajamäki K. From APC to the genetics of hereditary and familial colon cancer syndromes. Hum Mol Genet. 2021;30(R2):R206-R224.
| |
32. |
Hankey W, Frankel WL, Groden J. Functions of the APC tumor suppressor protein dependent and independent of canonical WNT signaling: implications for therapeutic targeting. Cancer Metastasis Rev. 2018;37(1):159-172.
| |
33. |
Das L, Quintana VG, Sweasy JB. NTHL1 in genomic integrity, aging and cancer. DNA Repair (Amst). 2020;93:102920.
| |
34. |
Kuiper RP, Nielsen M, De Voer RM, et al. NTHL1 Tumor Syndrome. 2020 Apr 2. In: Adam MP, Mirzaa GM, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2022. Available from: https://www.ncbi.nlm.nih.gov/books/NBK555473/
| |
35. |
Garofola C., Jamal Z., Gross G. P. Cowden Disease //StatPearls [internet]. – StatPearls Publishing, 2021.
| |
36. |
Kumamoto T, Yamazaki F, Nakano Y, et al. Medical guidelines for Li-Fraumeni syndrome 2019, version 1.1. Int J Clin Oncol. 2021;26(12):2161-2178.
| |
37. |
Aubrey BJ, Strasser A, Kelly GL. Tumor-suppressor functions of the TP53 pathway. Cold Spring Harb Perspect Med. 2016;6(5):a026062.
| |
38. |
Friedman J. Neurofibromatosis 1. Ncbi.nlm.nih.gov. https://www.ncbi.nlm.nih.gov/books/NBK1109/. Published 2022. Accessed August 29, 2022.
| |
39. |
Evans DGR, Kallionpää RA, Clementi M, et al. Breast cancer in neurofibromatosis 1: survival and risk of contralateral breast cancer in a five country cohort study. Genet Med. 2020;22(2):398–406.
| |
40. |
Petrilli AM, Fernández-Valle C. Role of Merlin/NF2 inactivation in tumor biology. Oncogene. 2016;35(5):537-48.
| |
41. |
Cui Y, Groth S, Troutman S, et al. The NF2 tumor suppressor merlin interacts with Ras and RasGAP, which may modulate Ras signaling. Oncogene. 2019;38(36):6370–6381.
| |
42. |
Green AS, Chapuis N, Lacombe C, et al. LKB1/AMPK/mTOR signaling pathway in hematological malignancies: from metabolism to cancer cell biology. Cell Cycle. 2011;10(13):2115-20.
| |
43. |
Cancer risk associated with an inherited STK11 mutation. URL: https://www.facingourrisk.org/info/hereditary-cancer-and-genetic-testing/hereditary-cancer-genes-and-risk/genes-by-name/stk11/cancer-risk
| |
44. |
Wang Y, Xue Q, Zheng Q, et al. SMAD4 mutation correlates with poor prognosis in non-small cell lung cancer. Lab Invest. 2021;101(4):463–476.
| |
45. |
Blatter R, Tschupp B, Aretz S, et al. Disease expression in juvenile polyposis syndrome: a retrospective survey on a cohort of 221 European patients and comparison with a literature-derived cohort of 473 SMAD4/BMPR1A pathogenic variant carriers. Genet Med. 2020;22(9):1524–1532.
| |
46. |
Atlas genetics oncology Familial Juvenile Polyposis Syndrome. URL: https://atlasgeneticsoncology.org/cancer-prone-disease/10047/familial-juvenile-polyposis-syndrome.
| |
47. |
Takahashi M, Kawai K, Asai N. Roles of the RET Proto-oncogene in Cancer and Development. JMA J. 2020;3(3):175-181.
| |
48. |
VHL gene: MedlinePlus Genetics. Medlineplus.gov. https://medlineplus.gov/genetics/gene/vhl/. Published 2022. Accessed August 29, 2022.
| |
49. |
Varshney N, Kebede AA, Owusu-Dapaah H, et al. A review of Von Hippel-Lindau Syndrome. J Kidney Cancer VHL. 2017;4(3):20–29.
| |
50. |
Middlebrooks CD, Stacey ML, Li Q, et al. Analysis of the CDKN2A gene in FAMMM syndrome families reveals early age of onset for additional syndromic cancers. Cancer Res. 2019;79(11):2992–3000.
| |