Theory of the Stationary Self-Consistent Universe

Автор: Avshalumov Alexander Shamailovich

Место работы автора: Moscow Research Institute for Cybernetic Medicine

Тип: монография Язык: русский ISBN: 9785944720450

Год издания: 2021 Место издания: Москва Число страниц: 92

Издательство: ООО "Издательство ТРИУМФ" (Москва)


Since the creation of GR and subsequent works in cosmology, the question of the curvature of space in the Universe is considered one of the most important and debated to this day. This is evident, because the curvature of space depends whether the Universe expands, contracts or is static. These discussions allowed the author to propose a paradoxical idea: simultaneous existence in the Universe of three interconnected space-times (positive, negative and zero curvature) and on this basis, to develop a theory in which each space-time plays its own role and develops in a strict accordance with its sign of curvature. The three space-time model of the structure of the Universe, proposed by the author, allows to solve many fundamental problems of modern cosmology and theoretical physics and creates the basis for building a unified physical theory (including one that unites GR and quantum physics).

1.  A. Einstein, Die Feldgleichungen der Gravitation, Sitzungsberichte der Preuss. Akad. der Wissenschaften, Berlin, (1915), P. 844-847.  
2.  D. Hilbert, «Die Grundlagen der Physic», Nachrichten Kon. Gesellshaft Wiss. Gottingen, Math. – Phys. Klasse, Heft 3, (1915), P. 395-407.  
3.  Albert Einstein, " Cosmological Considerations in the General Theory of Relativity " Sitzungsberichte der Preuss. Akad. der Wissenschaften, Berlin, (1917), P. 142-152.  
4.  W. de Sitter, On Einstein's Theory of Gravitation and its Astronomical Consequences, Monthly Notices of the Royal Astronomical Society, Vol. 76, Iss. 9, (1916), P. 699–728.  
5.  Friedmann, A: «Über die Krümmung des Raumes», Zeitschrift für Physik, Vol. 10, (1922), P. 377-386.  
6.  Friedmann, A: «Über die Mӧglichkeit einer Welt mit konstanter negativer Krümmung des Raumes», Zeitschrift für Physik, Vol. 21, (1924), P. 326-332.  
7.  Kaluza T. “Zum Unitätsproblem der Physic”, Sitzungsberichte der Preuss. Akad. der Wissenschaften, Berlin, Math. – Phys., (1921), P. 966-972.  
8.  Klein O., Quantentheorie und fünfdimensionale Relativitätstheorie, Zeitschrift für Physik, Vol. 37, (1926), P. 895-906.  
9.  Lemaître, G. “A Homogeneous Universe of Constant Mass and Growing Radius, Accounting for the Radial Velocity of the Extragalactic Nebulae”, Annales de la Société Scientifique de Bruxelles 47, (1927), P. 49-59.  
10.  Vesto M. Slipher, Nebulae., Proc. Am. Philos. Soc., Vol. 56, (1917), P. 403-409.  
11.  Howard P. Robertson, “On Relativistic Cosmology”, Philos. Mag. and Journal of Science, Vol. 5, (1928), P. 835-848.  
12.  Edwin P. Hubble, A Relation between distance and radial velocity among extra-galactic nebulae, Proc. Nat. Acad. Sci., 15 (3), (1929), P. 168-173.  
13.  Ralph A. Alpher and Robert Herman, Evolution of the Universe, Nature, 162, (1948), P. 774-775.  
14.  Dicke R. H., Peebles P. J. E., Roll P. G., Wilkinson D. T., Cosmic Black-Body Radiation., The Astrophysical Journal, Vol. 142, (1965), P. 414-419.  
15.  Penzias A. A., Wilson R. W., A Measurement of Excess Antenna Temperature at 4080 Mc/s., The Astrophysical Journal, Vol. 142, (1965), P. 419-421.  
16.  F. Hoyle, A New Model for the Expanding Universe, Monthly Notices of the Royal Astronomical Society, Vol. 108, Iss. 5, (1948), P. 372-382.  
17.  H. Bondi, T. Gold, The Steady-State Theory of the Expanding Universe, Monthly Notices of the Royal Astronomical Society, Vol. 108, Iss. 3, (1948), P. 252-270.  
18.  Gustav Naan, “Symmetrical Universe”, Publications of Tartu Astronomical observatory, Vol. XXXIV, (1964), P. 423-471.  
19.  W. Tiller, "The Positive and Negative Space-Time Frames as Conjugate Systems", (Stanford, Preprint (1975), in Future Science, ed. White and Krippner (Garden City, NY: Doubleday & Co., Inc.), (1977), P. 257–279.  
20.  John A. Wheeler, Genesis and Observership, Foundational Problems in the Special Sciences., Ed. by R. E. Butt, J. Hintikka, Dordrecht: D. Reidel, (1977), P. 3-33.  
21.  Barrow J. D., Tipler F. J., The Anthropic Cosmological Principle., Clarendon, Oxford University Press, (1986).  
22.  David Bohm, "Hidden Variables and the Implicate Order", Zygon 20 (2), (1985), P. 111-124.  
23.  Alain Connes, Noncommutative Geometry, (InterEditions Paris (1990)) San Diego: Academic Press, (1994), 654 p.  
24.  Strukov I. A., Brukhanov A. A., Skulachev D. P. Sazhin M. V., Anisotropy of the microwave background radiation, Pis'ma v Astronomicheskii Zhurnal (Astronomy Letters), Vol. 18, N. 5, (1992), P. 387-395.  
25.  George F. Smoot et al. “Structure in the COBE differential microwave radiometer first year maps”, Ap. J. Lett., 396, (1992), L1.  
26.  Adam G. Riess, et al., Observational Evidence from Supernovae for an Accelerating Universe and Cosmological Constant, Astronomical Journal, Vol. 116, (1998), P. 1009-1038.  
27.  S. Perlmutter, et al., Measurements of Omega and Lambda from 42 High-Redshift Supernovae, Astrophysical Journal, Vol. 517, (1999), P. 565-586.  
28.  Yu. S. Vladimirov, The Nature of Space and Time: An Anthology of Ideas, Moscow: Lenand, (2015), 400 p.  
29.  Schwartz M. D., Quantum Field Theory and Standard Model, Cambridge University Press, (2013), 952 p.  
30.  V. L. Ginzburg, “What problems of physics and astrophysics seem now to be especially important and interesting?”, UFN, Vol. 169, N. 4, (1999), P. 419–441.  
31.  I. F. Ginzburg, Unsolved problems in fundamental physics, UFN, Vol. 179, N. 5, (2009), P. 525–529.  
32.  John C. Baez. Open Questions in Physics, (2012).  
33.  S. Weinberg, Lectures in Particles and Field Theory, ed. S. Deser and K. Ford, Phys. Lett. 9, (1964), p. 357; Phys. Rev. 8138, (1965), p. 988.  
34.  A. D. Sakharov, Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe, JETP Lett., Vol. 5, (1967), P. 32-35.  
35.  Tolman R. C. On the Problem of the Entropy of the Universe as a Whole., Phys. Rev., 37, (1931), P. 1639-1660.  
36.  Tolman R. C. On the Theoretical Requirements for a Periodic Behaviour of the Universe., Phys. Rev., 38, (1931), P. 1758-1771.  
37.  Starobinsky A. A. Spectrum of relict gravitational radiation and the early state of Universe. JETP Lett., Vol. 30, (1979), P. 682-685.  
38.  Starobinsky A. A. A new type of isotropic cosmological model without singularity. Phys. Lett. B, Vol. 91, (1980), P. 99-102.  
39.  Guth A. H. Inflationary Universe: A possible solution to the horizon and flatness problems. Phys. Rev. D, Vol. 23, (1981), P. 347-356.  
40.  Mukhanov V. F., Chibisov G. V. Quantum Fluctuation and “Nonsingular Universe”. JETP Lett., Vol. 33, (1981), P. 532-535.  
41.  Linde A. D. A New Inflationary Universe Scenario: A Possible Solutions of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems. Phys. Lett. B, Vol. 108, (1982), P. 389-393.  
42.  Albrecht A., Steinhardt P. J., Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking. Phys. Rev. Lett., Vol. 48, (1982), P. 1220-1223.  
43.  A.D. Linde, “Inflationary Cosmology”, Lecture Notes in Physics, 738, (2008), P. 1-54.  
44.  A. Ijjas, P. J. Steinhardt, A. Loeb, “Inflationary paradigm in trouble after Planck 2013”, Phys. Lett. B. 723, (2013), P. 261-266.  
45.  Guth A. H., Kaiser, D. I. and Nomura, Y., “Inflationary Paradigm after Planck 2013,” Physics Letters B. 733, (2014), P. 112–119.  
46.  A. Linde, “Inflationary Cosmology after Planck 2013”, arXiv:1402.0526, (2014), P. 79.  
47.  A. Ijjas, P. J. Steinhardt, A. Loeb, “Inflationary schism”, Phys. Lett. B. 736, (2014), P. 142-146.  
48.  A. D. Sakharov, “The initial stage of an expanding Universe and the appearance of a non-uniform distribution of Matter”, JETP Letter, Vol. 49, (1965), P. 345-358.  
49.  Ia. B. Zeldovich, “The "hot" model of the Universe”, UFN, Vol. 89, (1966), P. 647–668.  
50.  Ia. B. Zeldovich, I. D. Novikov, «Structure and evolution of the Universe”, Moscow: Izdatel'stvo Nauka, (1975), 736 p., P. 657-663.  
51.  Einstein A., Zum kosmologischen Problem der allgemeinen Relativitätstheorie, Sitzungsberichte der Preuss. Akad. der Wissenschaften, Berlin, (1931), P. 235-237.  
52.  A. D. Sakharov, “Cosmological Models of the Universe with Rotation of Time's Arrow”, JETP Letter, Vol. 79, Iss. 3(9), (1980), P. 689-693.  
53.  A. D. Sakharov, «Multi-sheeted models of the universe», JETP Letter, Vol. 83, (1982), P. 1233-1240.  
54.  A. D. Sakharov, “Cosmological transitions with change of the sign of metrics”, JETP Letter, Vol. 87, (1984), P. 375-383.  
55.  P. J. Steinhardt, Neil Turok, A Cyclic Model of the Universe, Science, V. 296, (2002), P. 1436-1439.  
56.  Lauris Baum, Paul H. Frampton, Turnaround in Cyclic Cosmology, Phys. Rev. Lett., Vol. 98, N. 7, (2007), 071301.  
57.  Latham Boyle, Kieran Finn, Neil Turok «CPT-Symmetric Universe», Phys. Rev. Lett., 121(25), (2018), 251301(5).  
58.  J. S. Farnes «A unifying theory of dark energy and dark matter: Negative masses and matter creations within a modified \LambdaCDM framework», A&A, 620, A92, (2018).  
59.  Einstein A., Podolsky B., Rosen N., «Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? », Phys. Rev., Vol. 47, Iss. 10, (1935), P. 777-780;  
60.  Feynman R. The theory of positrons. Phys. Rev., Vol. 76, Iss. 6, (1949), P. 749-759.  
61.  H. Poincar\acute{e}, “The Measure of Time”, (Revue de métaphysique et de morale, 6: 1–13, 1898), The Foundations of Science, N.-Y.: Science Press, (1913), P. 222 – 234.  
62.  H. A. Lorentz “Electromagnetic phenomena in a system moving with any velocity smaller than that of light”, KNAW (Amsterdam), Proceedings, 6, (1904), P. 809-813.  
63.  A. Einstein, “Zur Elektrodynamic der bewegter Kӧrper”, Ann. Physik, 17, (1905), P. 891–921.  
64.  H. Poincar\acute{e} “Sur la dynamique de l’\acute{e}lectron”, Rendiconti del Circolo matematico di Palermo, 21, (1906), P. 129-176.  
65.  A. Einstein, “Einfluss der Schwerkraft auf die Ausbreitung des Lichtes”, Ann. Physik, 35, (1911), P. 898-908.  
66.  A. Einstein, “Die Grundlage der allgemeinen Relativitatstheorie”., Ann. Physik, Vol. 49, (1916), P. 769 – 822.  
67.  Robinson A. Non-standard analysis. -Princeton: Princeton Univ. Press, (1996), 293 p.  
68.  Kanovei V. and Reeken M. Nonstandard analysis. Axiomatically. Berlin: Springer-Verlag, (2004), XVI+408 p.  
69.  Gordon E. I., Kusraev A. G. Kutateladze S. S., Infinitesimal Analysis., Dordrecht etc.: Kluwer Academic Publishers, (2002), XIV+422 p.  
70.  Yaglom I. M. “Complex Number and its Application in Geometry”, Moscow: Fizmatgiz, (1963), 192 p., P. 13-19. // Complex Numbers in Geometry, Academic Press, (1968), 256 p.  
71.  William K. Clifford, On the Space Theory of Matter, Proc. of the Cambridge Phil. Soc., 2, (1876), P. 157-158.  
72.  D. Hestenes, G. Sobczyk, Clifford Algebra to Geometric Calculus – A Unified Language for Mathematical and Physics, Reidel Publishing Company, (1984), 336 p.  
73.  Lavrentiev M. A., Shabat B. V., Problems of hydrodynamics and their mathematical models, Moscow: Science, (1973). 416 p., P. 50-56.  
74.  Frobenius G., “Über das Pfaffische Probleme”, Jl. für die reine u. angew. Math. 82, (1877), P. 230–315.  
75.  Max Tegmark: “The Mathematical Universe”, Found. Phys. 38, (2008), P. 101-150;  
76.  V. S. Vladimirov, I. V. Volovich, Ye. I. Zelenov «p-Adic Analysis and Mathematical Physics». Singapore: World Scientific, (1994), 352 p.  
77.  B. Dragivich, A. Yu. Khrennikov, S. V. Kosyrev, I. V. Volovich, E. I. Zelenov. p-Adic Mathematical Physics: The First 30 Years. p-Adic Numbers, Ultrametric Anal. Appl., 9:2 (2017), P. 87-121.  
78.  J. Schwinger «A Magnetic Model of Matter», Science, Vol. 165 (N. 3895), (1969), P. 757-761.  
79.  Mandelbrot B. B., The Fractal Geometry of Nature, San Francisco: W. H. Freeman and Co., (1982), 460 p.  
80.  Robert L. Oldershaw. “Self-Similar Cosmological Model: Introduction and Empirical Tests” , International Journal of Theoretical Physics, Vol. 28, No. 6, (1989), P. 669-694.  
81.  Y. Baryshev, P. Teerikorpi. Discovery of Cosmic Fractals, World Scientific Publishing Co. Pte. Ltd., (2002), 363 p.  
82.  G. M. Zaslavsky, R. Z. Sagdeev, D. A. Usikov, A. A. Chernikov, Weak Chaos and Quasi-Regular Patterns., Cambridge: Cambridge University Press, (1991), 265 p.  
83.  Kuznetsov S. P., Hyperbolic Chaos: A Physicist’s View, Higher Education Press: Beijing and Springer-Verlag: Berlin, Heidelberg, (2012), 336 p.  
84.  V. S. Vladimirov, I. V. Volovich, “Superanalysis. I. Differential Calculus”, TMF, Vol. 59, N. 1, (1984), P. 3-27.  
85.  I. V. Volovich, “p-adic Space-Time and String Theory”, TMF, Vol. 71, N. 3, (1987), P. 337–340.  
86.  Alexander G. Parkhomov. Space. Earth. Human.: New Views on Science., Moscow: Izdatel'stvo Nauka, (2009), 272 p., P. 20-38. // Independently published, (2019), 251 p.  
87.  Gorban A. N., Kegl B., Wunsch D., Zinovyev A., Principal Manifolds for Data Visualization and Dimension Reduction., Vol. 58, Springer, Berlin-Heidelberg-New York, (2008), 340 p.  
88.  Gorban A. N., Zinovyev A., Principal Graphs and Manifolds. In Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods and Techniques., (eds. Olivas E. S., Guererro J. D. M., Sober M. M., Benedito J. R. M., Lopes A. J. S.). Information Science References, Hershey, PA, (2009).  
89.  Gorban A. N., Zinovyev A., Principal Manifolds and Graphs in Practice: from Molecular Biology to Dynamical Systems., Int. Journ. Neural Syst., 20, (2010), P. 219-232.  
90.  Dirac P. A. M., Quantized singularities in the electromagnetic field, Proc. Roy. Soc. Ser. A, Vol. 133, Iss. 821, (1931), P. 60-72.  
91.  Gerard 't Hooft, "Magnetic monopoles in unified gauge theories", Nuclear Physics B. 79 (2), (1974), P. 276–284.  
92.  Polyakov A.M., "Particle spectrum in quantum field theory", Journal of Experimental and Theoretical Physics Letters, Vol. 20, (1974), P. 194.  
93.  Coleman S., The Magnetic Monopole Fifty Years Later, UFN, Vol. 144, (1984), P. 277-340.  
94.  Ade P. A. R. et al. (Planck Collaboration). Planck 2013 results. I. Overview of products and scientific results, Astronomy & Astrophysics, Vol. 571, A1, (2014), P. 48.   
95.  Aghanim N. et al. (Planck Collaboration), "Planck intermediate results. XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth", Astronomy & Astrophysics, Vol. 596, A107, (2016), P. 52.  
96.  Adam G. Riess, et al., “A 2.4% Determination of the Local Value of the Hubble Constant”, The Astrophysical Journal, Vol. 826, Issue 1, (2016), P. 33.  
97.  Adam G. Riess, Stefano Casertano, Wenlong Yuan, Lucas M. Macri, and Dan Scolnic, “Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM.”, The Astrophysical Journal, Vol. 876, Issue 1, (2019), P. 85.  
98.  Blokhintsev D. I., Space and time in the microworld, Moscow: Science, (1982), 347 p., P. 256–283.  
99.  Carlo Rovelli, (2001). Quantum space-time: what we do know? (In C. Calender and N. Hugget (eds.), “Physics Meets Philosophy at the Planck scale”, Cambridge University Press, P. 101-122.  
100.  Terletsky, Ya. P., “Hypothesis of birth of particle pair with positive and negative masses from vacuum and its cosmological consequence”, in the book “Problems of theoretical Physics”, Moscow: publishing house UDN, (1990), P. 3-7.  
101.  Abhay Ashtekar, “New Variables for Classical and Quantum Gravity”, Phys. Rev. Lett., 57(18), (1986), P. 2244-2247.  
102.  Abhay Ashtekar, Jorge Pullin (eds.). Loop Quantum Gravity: The First 30 Years., (In 100 Years of General Relativity), World Scientific Publishing, (2017), 320 pp.  
103.  Veneziano G., «Construction of a crossing-symmetric, Regge-behaved amplitude for linearly rising trajectories». Nuovo Cimento, 57 A, (1968), P. 190-197.  
104.  I. V. Volovich, «p-Adic string», Classical Quantum Gravity, Vol. 4, (1987), P. 83-87.  
105.  Kushner A., Lychagin V., Rubtsov V., Contact Geometry and Nonlinear Differential equations., Cambridge University Press, (2007), 496 p.  
106.  G. M. Zaslavsky, Chaos in Dynamic Systems, New-York: Harwood Academic Publishers, (1985), 370 p.  
107.  P. Candelas, Gary T. Horowitz, Andrew Strominger, Edward Witten. Vacuum configurations for superstrings., Nuclear Physics B, Vol. 258, (1985), P. 46-74.  
108.  W. Heisenberg «Über die Spektra von Atomsystemen mit zwei Elektronen». Z. Phys. 39, (1926), P. 499-518.  
109.  P. W. Anderson, Theory of Magnetic Exchange Interactions, Exchange in Insulators and Semiconductors in Solid States Physics, Vol. 14, F. Seitz and D. Turnbull (eds.) Academic Press, New York, 1963.  
110.  L. Landau, R. Pierts, Quantum Electrodynamics in Configuration Space, Zeit. f. Phys., Vol. 62, (1930), P. 188-200.  
111.  A. T. Gavrilin, On the probability amplitude of photon’s position, Vestnik of Lobachevsky State University of Nizhni Novgorod, N. 6(1), (2011), P. 70-74.  
112.  S. L. McCall and E. L. Hahn, Self-induced Transparency by Pulsed Coherent Light, Phys. Rev. Lett., Vol. 18, (1967), P. 908-911.  
113.  C. N. Yang, R. Mills. Conservation of Isotopic Spin and Isotopic Gauge Invariance, Phys. Rev., Vol. 96, N. 1, (1954), P. 191 – 195.  
114.  Schwinger J. A Theory of the Fundamental Interactions, Ann. of Phys., Vol. 2, (1957), P. 407-434.  
115.  J. Leite - Lopes, A model of the universal fermi interaction, Nucl. Phys., Vol. 8, (1958), P. 234-236.  
116.  Salam A., Ward J. C., Weak and Electromagnetic Interactions, Nuovo Cimento, Vol. 11, (1959), P. 568-577.  
117.  Sheldon L. Glashow, Partial-symmetries of weak interactions, Nucl. Phys., Vol. 22, (1961), P. 579-588.  
118.  Salam A., Ward J. C., Electromagnetic and weak interactions, Phys. Lett., Vol. 13, (1964), P. 168-171.  
119.  Faddeev L. D., Popov V. N. Feynman Diagrams for the Yang-Mills Field, Phys. Lett. B, Vol. 25, (1967), P. 29 - 30.  
120.  Weinberg S., A model of leptons, Phys. Rev. Lett., Vol. 19, (1967), P. 1264-1266.  
121.  Salam A., Week and Electromagnetic Interaction, Elementary Particle Theory, Ed. N. Svartholm. – Almguist and Wiksell, Stockh., (1968), P. 367-377.  
122.  G. ‘t Hooft, Renormalization of massless Yang-Mills fields, Nucl. Phys., Vol. B33, (1971), P. 173-199.  
123.  G. ‘t Hooft, Renormalizable Lagrangians for massive Yang-Mills fields, Nucl. Phys., V. B35, (1971), P. 167-188.  
124.  G. ‘t Hooft, M. Veltman. Regularization and Renormalization of Gauge Fields, Nuclear Physics B, Vol. 44, (1972), P. 189–219.  
125.  L. D. Faddeev, Gauge Invariant Model of Electromagnetic and Week Interactions of Leptons, Report of Ac. of Sc. USSR, Vol. 210, N. 4, (1973), P. 807– 810.  
126.  Arnison G. et al. (UA1), Experimental observation of isolated large transverse energy electrons with associated missing energy at s=540 GeV, Phys. Lett. B, Vol. 122, (1983), P. 103-116.  
127.  Banner M. et al. (UA2), Observation of single isolated electrons of high transverse momentum in events with missing transverse energy at the CERN pp collider, Phys. Lett. B, Vol. 122, (1983), P. 476-485.  
128.  Arnison G. et al. (UA1), Experimental observation of lepton pairs of invariant mass around 95 GeV/c2 at the CERN SPS collider, Phys. Lett. B, Vol. 126, (1983), P. 398-410.  
129.  Bagnaia P. et al. (UA2), Evidence for Z0 ---> e+ e- at the CERN anti-p p Collider, Phys. Lett. B, Vol. 129, (1983), P. 130-140.  
130.  Arnison G. et al. (UA1), Further evidence for charged intermediate vector bosons at the SPS collider, Phys. Lett. B, Vol. 129, (1983), P. 273-282.  
131.  Bagnaia P. et al. (UA2), A Study of High Transverse Momentum Electrons Produced in anti-p p Collisions at 540-GeV, Z. Phys. C (1), Vol. 24, (1984), P. 1-17.  
132.  Andersen G. B. et al. Trapped antihydrogen. Nature 468, (2010), P. 673-676.  
133.  Andersen G. B. et al. Confinement of antihydrogen for 1,000 seconds. Nat. Phys. 7, (2011), P. 558-564.  
134.  The ALPHA Collaboration & Charman A. E. Description and first application of a new technique to measure the gravitational mass of antihydrogen. Nat. Commun., Vol. 4, (2013), 1785.  
135.  P\acute{e}rez, P. et al. The GBAR antimatter gravity experiment. Hyperf. Interact., Vol. 233, (2015), P. 21 – 27.  
136.  Bertsche, W. A. Prospects for comparisons of matter and antimatter gravitation with ALPHA-g., Philosophical Transactions of The Royal Society A., (2018), 376 (2116): 20170265.  
137.  Kostelecký V. A., Vargas A. J. Lorentz and CPT tests with hydrogen, antihydrogen, and related systems. Phys. Rev. D, Vol. 92, 056002, (2015).  
138.  Ulmer, S. et al. Hight-precision comparison of the antiproton-to-proton charge-to-mass ratio. Nature, Vol. 524, (2015), P. 196 – 199.  
139.  Crivelli P., Cooke D., Heiss M. W. Antiproton charge radius. Phys. Rev. D, Vol. 94, (2016), 052008.  
140.  Hori, M. et al. Buffer-gas cooling of antiprotonic helium to 1.5 to 1.7 K, and antiproton-to-electron mass ratio. Science, Vol. 354, (2016), P. 610 – 614.  
141.  Ahmadi, M. et al. Observation of the 1S-2S transition in trapped antihydrogen. Nature, Vol. 541, (2017), P. 506 – 510.  
142.  Ahmadi, M. et al. Observation of the hyperfine spectrum of antihydrogen. Nature, Vol. 548, (2017), P. 66 – 69.  
143.  Ahmadi, M. et al. Antihydrogen accumulation for fundamental symmetry tests. Nat. Commun., Vol. 8, (2017), P. 681.  
144.  Smorra, C. A parts-per-billion measurement of the antiproton magnetic moment. Nature, Vol. 550, (2017), P. 371 – 374.  
145.  Rasmussen C. 0., Madsen N. & Robicheaux F. Aspects of 1S-2S spectroscopy of trapped antihydrogen atoms. J. Phys. B, Vol. 50, 184002, (2017); corrigendum Vol. 51, 099501, (2018).  
146.  Ahmadi, M. et al. Characterisation of the 1S-2S transition in antihydrogen. Nature, Vol. 557, (2018), P. 71 – 75.  
147.  Ahmadi, M. et al. Observation of the 1S-2P Lyman-\alpha transition in antihydrogen. Nature, Vol. 561, (2018), P. 211–215.  
148.  Erikson S. Precision measurements on trapped antihydrogen in the ALPHA experiment. Philos. Trans. Royal Soc. A, Vol. 376, (2018), 20170268.  
149.  Capra A. & ALPHA Collaboration. Lifetime of magnetically trapped antihydrogen in ALPHA. Hyperfine Interact. 240, 9 (2019).  
150.  S. Sala, A. Ariga, A. Ereditato, R. Ferragut, M. Giammarchi, M. Leone, C. Pistillo, P. Scampoli «First demonstration of antimatter wave interferometry», Science Advances, Vol. 5, No. 5, eaav7610, (2019).  
151.  The ALPHA Collaboration. Investigation of the fine structure of antihydrogen. Nature 578, (2020), P. 375-380.  
152.  R. P. Feynman and M. R. Hibbs, Quantum mechanics and path integrals, (McGraw Hill, New York, 1965), 365 p.  
153.  Handjian Ling, Guillam E. Mclvor, Kasper van der Vaart, Richard T. Vaughan, Alex Thornton, Nicholas T. Ouellette, Costs and Benefits of Social Relationships in the Collective Motion of Bird Flocks, Nature Ecology & Evolution, 3, (2019), P. 943-948.  
154.  Nicolas Manton and Paul Sutcliffe, Topological Solitons. Cambridge University Press, N.-Y., (2004), 506 p.  
155.  V. E. Zakharov, A. B. Shabat, Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media, JETP Letter, Vol. 61, N. 1, (1971), P. 118-134.  
156.  V. E. Zakharov, L. A. Takhtadzhyan, L.D. Faddeev, Complete description of solutions of the 'sine-Gordon' equation, Sov. Phys. Dokl., Vol. 219, N. 6, (1974), P. 1334-1337.  
157.  Zakharov V. E. (ed.) “What is integrability?”, Springer-Verlag, (1992), XIV+321p.  
158.  V. E. Zakharov, E. A. Kuznetsov, Solitons and collapses: two evolution scenarios of nonlinear wave systems, UFN, Vol. 182, (2012), P. 569 – 592.  
159.  O. M. Braun, Y. S. Kivshar, The Frenkel-Kontorova Model. Concept, Methods and Applications. SPRINGER, (2004), 536 p.  
160.  A. S. Fokas «Integrable Nonlinear Evolution Partial Differential Equation in 4 + 2 and 3+1 Dimensions», Phys. Rev. Lett., Vol. 96, (2006), 190201.